AKTIVITAS SEISMOTEKTONIK DALAM MENENTUKAN PERCEPatan DAN KECEPATAN TANAH MAKSIMUM DI SULAWESI BARAT

Muhammad Altin Massina¹, Lantu², A. Rixs Jayanti Amruh³
Prodi Geofisika Universitas Hasanuddin Makassar
muhammad_altin@yahoo.co.id¹; geolantu@gmail.com²; Rixsjayanti@gmail.com³

ABSTRAK

Kata-kata kunci: seismotektonik, gempa bumi, magnitudo, statistik regresi, percepatan tanah maksimum, kecepatan tanah maksimum

PENDAHULUAN

Sesar-sesar yang melintasi Sulawesi Barat terdiri dari:

1) Sesar Palu-Koro [5], di bagian timur Sulawesi Barat memanjang dari Palu ke arah selatan tenggara melalui Sulawesi Selatan/Barat bagian utara memotong sesar Matano menuju ke selatan teluk Bone sampai laut Banda;

27
2) Sesar Saddang, memanjang dari pesisir pantai Mamuju memotong diagonal melintasi daerah Sulawesi Barat dan Sulawesi Selatan bagian tengah, bagian selatan;
3) Sesar Kaluku memanjang sepanjang wilayah Mamuju di Sulawesi Barat.

Pergerakan tersebut menyebabkan perpindahan materi. Waktu yang diperlukan untuk perpindahan harus diketahui sehingga kecepatan tanah dan percepatan tanah dapat dihitung. Ketika terjadi gempa bumi timbul getaran yang disebut sebagai gelombang seismik yang menyebabkan tanah mengalami kecepatan. Sementara percepatan menunjukkan perubahan kecepatan mulai dari keadaan diam sampai pada kecepatan tertentu.

Berdasarkan catatan data historis gempa bumi dan tsunami di wilayah ini selama kurang waktu lebih 100 tahun telah terjadi beberapa kali gempa bumi tektonik dengan kekuatan 5,0 SR. Dampak dari gempa bumi tersebut yaitu terjadinya pergerakan tanah (ground displacement) sebagai penyebab terjadinya percepatan tanah maksimum (PGA) dan kecepatan tanah maksimum (PGV). Berdasarkan uraian tersebut, penelitian untuk penentuan percepatan tanah maksimum dan kecepatan tanah maksimum, dapat dilakukan dengan menggunakan data seismotektonik (intesitas gempa bumi).

BAHAN DAN METODE

Penelitian ini mengambil lokasi di Propinsi Sulawesi Barat. Pengambilan data gempa dilakukan di stasiun BMKG wilayah IV Makassar.

Bahan terdiri dari perangkat keras berupa komputer Intel Core i3-370M serta periferalnya. Perangkat lunak menggunakan Arc view GIS versi 9.3 ESRI, SPSS 16 dan Microsoft Excel.

Data yang digunakan berupa data gempa bumi harian dalam waktu 102 tahun dari tahun 1900 – 2012. Data tersebut terdiri dari waktu kejadian gempa bumi, posisi lintang dan bujur, kedalaman hiposenter, dan magnitudo gempa.

Hasil perhitungan percepatan dan kecepatan tanah dibuat menggunakan software SPSS 16. Hasil ini dianalisis untuk mendapatkan model, kemudian dibandingkan dengan yang diperoleh secara analitik dengan persamaan matematik.

HASIL DAN DISKUSI

Hasil perhitungan dengan menggunakan analisis statistik memperlihatkan nilai korelasi kekuatan antara variabel PGA dan variabel PGV adalah 0,983. Hal ini berarti kekuatan hubungan antara jarak hiposenter dan magnitudo terhadap variabel PGA dan PGV sangat kuat. Nilai determinasi pengaruh antara variabel PGA dan PGV dapat ditentukan dengan dari jarak hiposenter dan nilai magnitudo sebesar 98,3 %. Variabel lain yang menentukan hubungan sebesar 1,7% merupakan faktor geomorfologi dan litologi lokasi penelitian.

Analisis statistik dengan menggunakan F-test atau uji simultan bertujuan mengetahui pengaruh bersama antara variabel independen dan dependen. Berdasarkan tabel Anova menunjukkan nilai F-hitung (4,994) lebih besar dibanding F-tabel (0,089) seperti pada Tabel 1.

Tabel 1. Perhitungan dengan ANOVA

<table>
<thead>
<tr>
<th>Model</th>
<th>df</th>
<th>Rata²</th>
<th>F-hit</th>
<th>F-tab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reg</td>
<td>1</td>
<td>83855,133</td>
<td>4,998</td>
<td>0,089</td>
</tr>
<tr>
<td>Res</td>
<td>317</td>
<td>43209,332</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>318</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabel 1 menunjukkan komponen PGA dan PGV sangat dipengaruhi terhadap aktivitas kegempaan di wilayah Sulawesi Barat. Berdasarkan grafik normal regresi standar residual diperoleh bahwa hubungan intensitas baik PGV maupun PGA semuanya membentuk garis linear. Gambar Intensitas Mercalli yang diplot terhadap kecepatan tanah maksimum dan percepatan tanah maksimum dapat dilihat pada Gambar 1 dan 2.

Gambar 1. Intensitas Mercalli yang diplot terhadap kecepatan tanah maksimum untuk gempa bumi

Gambar 2. Intensitas Mercalli yang diplot terhadap Percepatan tanah maksimum untuk gempa bumi

Model korelasi kecepatan tanah maksimum

Gambar 3. Model Korelasi PGV dan PGA Tahun 1900 – 2012

Distribusi gempa bumi di wilayah Sulawesi Barat berkekuatan 5,0 SR terjadi di 22 lokasi. Gempa bumi berkekuatan 5,0 – 6,0 SR terjadi di 21 lokasi, sementara 9 lokasi terjadi gempa dengan 6,0 – 7,0 SR. Gempa bumi dengan kekuatan lebih dari 7,0 SR hanya terjadi pada 1 lokasi di Sulawesi Barat. Dari segi kerusakan gempa bumi di Sulawesi Barat berkisar VI – VII MMI. Skala MMI demikian dapat menghawatirkan bagi masyarakat yang bermukim di sekitar pantai Selat Makassar, karena dapat membahayakan gelombang tsunami.

Kekuatan gempa bumi berimplikasi pada percepatan tanah dan kecepatan tanah. Percepatan tanah adalah percepatan gelombang
gempa bumi yang berupa gangguan. Percepatan tanah maksimum (PGA) memberikan informasi efek paling parah yang pernah dialami suatu lokasi di Sulawesi Barat yaitu di Kabupaten Mamuju Utara. Kecepatan tanah maksimum (PGV) merupakan kecepatan tanah terbesar pada permutkuan dalam periode waktu tertentu akibat getaran gempa bumi. Percepatan dan kecepatan tanah maksimum yang dianalisis dengan alat seismograf di wilayah Sulawesi Barat memberikan nilai PGA dari yang terkecil 26 cm/det² sampai yang terbesar 1069 cm/det². Sementara nilai PGV dari yang terkecil 61 cm/det sampai nilai terbesar 826 cm/det.

Percepatan tanah maksimum dan kecepatan tanah maksimum memberikan gambaran efek terparah dan resiko gempa bumi yang mungkin terjadi di kemudian hari. Makin besar nilai PGA dan PGV, maka semakin besar dampak dan resiko gempa bumi dikemudian hari.

KESIMPULAN

Hasil penelitian dan analisis yang dijelaskan di atas dapat diartik kesimpulan sebagai berikut:

2. Nilai percepatan tanah maksimum berkisar 26 cm/det² sampai yang terbesar 1069 cm/det². Sementara nilai kecepatan tanah maksimum dari yang terkecil 61 cm/det sampai nilai terbesar 826 cm/det. Model hubungan antara percepatan tanah maksimum dengan kecepatan tanah maksimum berbanding lurus sesuai model matematika yang berlaku.

DAFTAR PUSTAKA

UCAPAN TERIMA KASIH