RANCANG BANGUN RANGKAIAN
RELE PENGAMAN UNTUK MENGATASI
GANGGUAN MOTOR INDUKSI 3 FASA

1Endro Wahjono, 2Suhariningsih, 3Achmad Rhana Ferdiyta
Elektro Industri, Politeknik Elektronika Negeri Surabaya
1endro@pens.ac.id 2nuning@pens.ac.id 3ferdifixic@gmail.com

ABSTRAK

Motor induksi tiga fasa adalah salah satu motor listrik paling popular yang sering digunakan baik perusahaan besar maupun kecil, salah satu alasan mengapa motor induksi tiga fasa ini populer adalah low maintenance dari pada motor-motor yang lain. Adapun gangguan-gangguan yang sering dialami oleh motor induksi tiga fasa seperti Overload, Overvoltage, Unbalance Voltage dan Phase Failure. Terjadinya gangguan pada motor induksi tiga fasa adalah karena seringnya dioperasikan melebihi kapasitas yang dimiliki oleh motor induksi tiga fasa dan kurangnya perawatan secara berkala oleh operator atau teknisi disebuah industri sehingga menyebabkan kerusakan yang mengakibatkan kegagalan operasi dari motor induksi tiga fasa. Gangguan-gangguan tadi harus segera ditanggulangi dengan cara memutus sumber tiga fasa oleh kontakor, standar yang digunakan adalah ANSI Std C84.1-1989 untuk Unbalance Voltage, gangguan Overload sesuai dengan Protection Relay CKR series sedangkan toleransi Overvoltage sebesar -5% dan +10%, untuk gangguan Phase Failure dideteksi dari adanya sambungan sumber tiga fasa yang hilang. Sistem proteksi bekerja dengan cara membandingkan nilai setting point dan nilai parameter baik arus dan tegangan yang melewat sistem. Projek akhir ini diharapkan dapat bekerja dengan membandingkan set poin antara 2 hingga 7 Ampere untuk Overload, tegangan antara 350 sampai 380 dengan presentasi 0% sampai 10% untuk Unbalance Voltage dan tegangan 418 Volt untuk Overvoltage.

Kata-kata kunci: motor induksi tiga fasa, sensor arus, sensor tegangan, overload, overvoltage, unbalance voltage, phase failure, STM32F4

PENDAHULUAN

Motor induksi tiga fasa adalah tergolong salah satu jenis motor AC yang sering digunakan di dunia industri daripada jenis motor yang lain seperti motor DC, motor induksi tiga fasa juga mempunyai kelebihan yaitu low maintenance, kontruksi kokoh dan mempunyai efisiensi tinggi membuatnya banyak digunakan pada plan dengan skala besar.

Dalam kenyataannya, banyak sekali dijumpai permasalahan yang mungkin tidak diperhitungkan sebelumnya, seperti pemakaian yang terus-menerus membuat motor induksi tiga fasa mengalami kelebihan beban atau overload yang menyebabkan motor mengalami overheating atau panas yang berlebih.

Pada paper ini dibahas mengenai gangguan-gangguan yang sering terjadi pada motor induksi tiga fasa seperti Overload, Overvoltage, Unbalance Voltage dan Phase Failure.

Gangguan Overload terjadi karena beban yang ditanggung oleh motor terlalu besar, sehingga terjadi lonjakan arus yang melebihi arus nominal pada motor yang membuat motor mengalami kerusakan. Ada dua karakteristik waktu pada gangguan overload, yaitu definite time dan inversee time. Definite time bekerja sesuai dengan waktu yang kita setting, apabila kita setting 5 pada arus 6 amperc, maka sistem akan trip pada arus 6 ampere dan waktu terjadinya trip selama 5 detik. sedangkan karakteristik inverse yang kita gunakan adalah jenis very inverse, di mana waktu terjadinya trip berbanding terbalik dengan besarnya arus yang lewat. Persamaan very inverse dinyatakan sebagai berikut.
\[t = \frac{1.35}{T} \cdot T_p(s) \]

Unbalance Voltage terjadi karena ketidakseimbangan tegangan per fasa, baik fasa R, S atau T. Pada kenyataannya, sulit mendapatkan tegangan yang seimbang dari sumber tiga fasa, sehingga terdapat standar toleransi prosentasi sumber tiga fasa. Berikut Tabel 1 adalah standar toleransi Unbalance Voltage.

<table>
<thead>
<tr>
<th>Standar Unbalance Voltage</th>
<th>% Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSI Std C84.1 – 1989</td>
<td>3</td>
</tr>
<tr>
<td>Pacific Gas and Electric</td>
<td>2.5</td>
</tr>
<tr>
<td>NEMA Std MGI.1993</td>
<td>1</td>
</tr>
</tbody>
</table>

Gangguan Overvoltage disebabkan karena tegangan yang melewati sistem melebihi dari tegangan yang dibutuhkan. Gangguan Overvoltage dapat menyebabkan overspeed pada motor dan berakhir dengan kerusakan. Adapun toleransi kenaikan tegangan, yaitu +10% dari tegangan awal, yaitu 380 Volt.

Sedangkan yang terakhir adalah gangguan Phase Failure, yang disebabkan oleh terlepasnya salah satu atau salah dua sambungan sumber tiga fasa yang mengakibatkan beban tidak dipasok dengan baik.

KONFIGURASI SISTEM

Gambar 1. Blok Diagram Sistem

PERANCANGAN SENSOR TEGANGAN

Sensor tegangan digunakan untuk men-setting tegangan yang lewat pada sambungan tiga fasa, sehingga bisa menentukan parameter tegangan yang ditentukan. Pada perancangan sensor tegangan, dibutuhkan potensial transformer untuk menurunkan tegangan dari 380 Volt AC menjadi 12 Volt AC yang mana akan dikonversi lagi menjadi menjadi 3 Volt DC melalui rectifier dan voltage divider. Berikut adalah gambar dari rangkaian sensor tegangan yang ditunjukan pada Gambar 2 dan hardware sensor tegangan pada Gambar 3.
PERANCANGAN SENSOR ARUS
Sensor arus digunakan sebagai penentuan parameter arus yang melewati masing-masing fasa pada sumber tiga fasa, pemasangannya secara seri pada tiap-tiap fasa. Jenis sensor arus yang digunakan adalah ACS 712 dengan range 20A. Berikut Gambar 4 adalah rangkaian sensor arus dan Gambar 5 merupakan hardware sensor arus.

PERANCANGAN SOFTSWITCH
Softswitch digunakan sebagai pengganti rele yang berfungsi untuk memutus atau menyambung kontaktor pada sistem. Rangkaian softswitch ini menggunakan MOC 3014 dan BTA 12 sebagai TRIAC. Jadi, fungsi spesifik rangkaian softswitch untuk meredam arus yang muncul ketika memutus kontaktor yang menerima respon dari mikrokontroler. Berikut Gambar 6 adalah rangkaian softswitch dan Gambar 7 adalah hardware softswitch.
Gambar 4. Rangkaian Sensor Arus

Gambar 5. Hardware Sensor Arus

Gambar 6. Rangkaian Softswitch

Gambar 7. Hardware Softswitch
PERANCANGAN MIKROKONTROLLER DAN USER INTERFACE

Gambar 8. Hardware Mikrokontroller dan User interface

PENGUJIAN DAN ANALISA

Setelah perancangan selesai, dilakukan pengujian per partisi dan pengujian sistem integrasi.

PENGUJIAN SENSOR TEGANGAN

Pengujian sensor tegangan dilakukan dengan cara pengambilan data yang dilakukan pada output potensial transformer dan output voltage divider yang ditunjukan pada Tabel 2.

Dapat dilihat pada Tabel 2, output dari potensial transformer akan dibaca oleh voltage divider yang nantinya akan diolah kembali pada ADC mikrokontroller. Besar nilai tegangan yang mampu dibaca mikrokontroller sebesar 3 Volt.

PENGUJIAN SENSOR ARUS

Dari data di atas bisa dilihat, tegangan output dari sensor arus akan diolah pada ADC mikrokontroller sebagai parameter arus untuk men-trip-kan sistem.

PENGUJIAN SOFTSWITCH

Pengujian softswitch dilakukan dengan cara memberikan tegangan 5 Volt DC yang diperoleh dari VCC mikrokontroller, sehingga softswitch dan sumber akan dialiri sumber, begitu pula sebaliknya.

<table>
<thead>
<tr>
<th>V in 3Ø (Volt)</th>
<th>Vout Potensial transformer (Volt)</th>
<th>V out Voltage Divider (Volt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V ac R-S</td>
<td>V ac S-T</td>
<td>V ac R-T</td>
</tr>
<tr>
<td>V dc R-S</td>
<td>V dc S-T</td>
<td>V dc R-T</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tabel 3. Data Sensor Arus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arus</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0.5</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1.5</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>2.5</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>3.5</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>4.5</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>5.5</td>
</tr>
<tr>
<td>6</td>
</tr>
</tbody>
</table>
PENGUJIAN OVERLOAD
Pengujuan overload dilakukan dengan cara memasang beban utama yaitu motor induksi tiga fasa, arus seting yang digunakan sebesar 3 ampere dan range yang digunakan sebagai pengujuan sebesar 3 sampai 6 ampere. Pengujuan dilakukan secara simulasi menggunakan PROTEUS dan PSIM sebagai pengambilan data pengujian. Terdapat selisih waktu trip ketika simulasi dengan waktu trip teori, terjadi error sebesar 1,51% hingga 5,25% dengan rata-rata prosentase sebesar 3,38%. Oleh karena itu, diharapkan dapat terbentuk kurva very inverse seperti ditunjukkan pada Gambar 9.

Gambar 9. Grafik very inverse

PENGUJIAN OVERVOLTAGE
Pengujuan Overvoltage dilakukan dengan cara menambahkan tegangan sebesar 10% dari tegangan awal, yaitu 380 Volt, kenaikan 10% berdasarkan toleransi PLN yang membatasi kenaikan tegangan hingga 10% dari tegangan awal sumber tiga fasa. Pada perhitungan teori didapat hasil sebesar 418 Volt, sehingga sistem akan trip pada tegangan sebesar 418 Volt.

PENGUJIAN VOLTAGE UNBALANCE

PENGUJIAN PHASE FAILURE
Pengujuan Phase Failure dilakukan dengan cara melepas salah satu atau dua sambungan pada sumber tiga fasa, sehingga terjadi kegagalan dalam mensuplai beban motor. Ketika terjadi Phase Failure sistem akan trip pada delay selama 3 detik.

KESIMPULAN
Dari hasil proses perencanaan, pembuatan dan pengujuan sistem pengaman motor induksi tiga fasa dapat disimpulkan sebagai berikut:
1. Data pembacaan sensor arus dan sensor tegangan berperan penting dalam penentuan parameter yang akan dibaca oleh mikrokontroler untuk memutus sistem.
2. Dari pengujuan Overload didapat error sebesar 3,38% dari data simulasi dengan data pengujuan.
3. Pengujuan Voltage Unbalance yang sudah dilakukan didapat sistem akan trip melebihi 3% menurut standar ANSI.
4. Pengujuan overvoltage didapat hasil ketika tegangan yang melewat sistem melebihi 10% dari tegangan awal yaitu sebesar 380 Volt, sehingga sistem akan trip sebesar 418 Volt.

DAFTAR PUSTAKA