BAB IV
PENGUJIAN PERANGKAT LUNAK DAN ANALISIS HASIL
PENGUJIAN

Pada skripsi ini, telah dilakukan pengujian terhadap perangkat lunak sistem pengenalan gender yang telah dibuat sebelumnya dan akan dihasilkan data berupa rata-rata hasil keakuratan dari setiap metode dengan beberapa jenis dataset dan cross validation. Selain itu, dilakukan juga pengujian terhadap perangkat lunak sistem pengenalan gender tersebut, yang akan dihasilkan data berupa rata-rata waktu komputasi untuk masing-masing metode.

Pengujian dilakukan menggunakan dataset citra wajah dan dilakukan perulangan sebanyak 10 kali untuk masing-masing fold dengan 3 variasi nilai k pada k-fold cross validation, yaitu 2, 5, dan 10. Setiap perulangan akan menghasilkan akurasi yang kemudian dicari rata-rata keakuratan untuk masing-masing metode.

Akurasi adalah perbandingan antara jumlah citra uji yang hasil prediksi kelasnya benar terhadap jumlah seluruh citra yang diujikan [28]. Persamaan untuk menghitung keakuratan terlihat pada persamaan (16) yaitu sebagai berikut.

\[ \alpha = \frac{\text{Jumlah citra uji yang melakukan prediksi benar}}{\text{Jumlah seluruh citra uji}} \]

Selain itu, simpangan baku (standard deviation) untuk masing-masing metode juga dihitung. Simpangan baku adalah ukuran penyebaran data yang menunjukkan jarak rata-rata dari nilai tengah ke suatu titik nilai [29]. Semakin besar nilai simpangan baku yang dihasilkan, maka penyebaran dari nilai tengahnya juga besar, begitu pula sebaliknya. Nilai simpangan baku yang semakin kecil, menunjukkan bahwa nilai sampel dan populasianya berkumpul di sekitar nilai rata-ratanya [30]. Persamaan (17) merupakan persamaan untuk menghitung simpangan baku dari kumpulan sampel

\[ \sigma = \sqrt{\frac{\sum_{j=1}^{z}(x_j - \bar{x})^2}{z-1}} \]

\( \sigma \) = simpangan baku dari kumpulan sampel
\( z \) = jumlah total sampel
\( x_j \) = nilai sampel ke - j
\( \bar{x} \) = nilai rata-rata dari seluruh sampel
4.1. Hasil Pengujuan dan Analisis Perangkat Lunak

Pada bagian ini diberikan tabel hasil pengujuan yang telah dilakukan terhadap sistem pengenalan gender dan analisis terhadap hasil pengujuan tersebut. Tabel berikut menjelaskan mengenai perbedaan terhadap jenis dataset dari tiap tabel yang dihasilkan. Kacamata pada bagian ini mengandung arti bahwa dataset memiliki responden yang menggunakan kacamata berjumlah 50 citra yang terdiri atas 25 citra berasal dari responden pria dan 25 citra berasal dari responden wanita, sedangkan cropping pada bagian ini mengandung arti bahwa dataset berisi citra yang telah dilakukan cropping pada bagian wajahnya. Dari keterangan tersebut PD1 merupakan lambang dari citra yang tidak memiliki responden berkacamata dan telah dilakukan cropping pada bagian wajahnya, sedangkan PD2 merupakan lambang dari citra yang memiliki responden berkacamata dan telah dilakukan cropping pada bagian wajahnya. Untuk PD3 merupakan lambang dari citra yang tidak memiliki responden berkacamata dan tidak dilakukan cropping, sedangkan PD4 merupakan lambang dari citra yang memiliki responden berkacamata dan tidak dilakukan cropping. Tabel 4.1 merupakan tabel yang menjelaskan mengenai jenis dataset tersebut.

<table>
<thead>
<tr>
<th></th>
<th>Kacamata</th>
<th>Cropping</th>
</tr>
</thead>
<tbody>
<tr>
<td>PD1</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>PD2</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>PD3</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>PD4</td>
<td>✓</td>
<td>×</td>
</tr>
</tbody>
</table>

4.1.1. Hasil Pengujuan Rata-Rata Keakuratan dan Simpangan Baku untuk Metode Subtraction

Berdasarkan penjelasan dari Subbab 4.1, maka telah dijelaskan Tabel 4.1 merupakan tabel perbedaan jenis dataset yang digunakan untuk tiap metode. Tabel 4.2 berikut merupakan tabel hasil rata-rata keakuratan dan standar deviasi dari metode subtraction berdasarkan cross validation dan perbedaan jenis dataset yang digunakan sesuai dengan Tabel 4.1.
Tabel 4.2. Rata-Rata Keakuratan dan Simpangan Baku Metode Subtraction.

<table>
<thead>
<tr>
<th>cross validation</th>
<th>Jenis</th>
<th>Jenis Dataset</th>
<th>PD1</th>
<th>PD2</th>
<th>PD3</th>
<th>PD4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>α (%)</td>
<td></td>
<td>78.46</td>
<td>79.44</td>
<td>58.68</td>
<td>60.22</td>
</tr>
<tr>
<td></td>
<td>min (%)</td>
<td></td>
<td>76.4</td>
<td>78.2</td>
<td>54.8</td>
<td>56.6</td>
</tr>
<tr>
<td></td>
<td>max (%)</td>
<td></td>
<td>80</td>
<td>80.8</td>
<td>63.2</td>
<td>64.2</td>
</tr>
<tr>
<td></td>
<td>σ (%)</td>
<td></td>
<td>1.15</td>
<td>0.83</td>
<td>2.36</td>
<td>2.31</td>
</tr>
<tr>
<td>5-fold</td>
<td>α (%)</td>
<td></td>
<td>78.54</td>
<td>81.38</td>
<td>59.08</td>
<td>60.32</td>
</tr>
<tr>
<td></td>
<td>min (%)</td>
<td></td>
<td>76</td>
<td>79.8</td>
<td>56.8</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>max (%)</td>
<td></td>
<td>81.4</td>
<td>83.2</td>
<td>60.8</td>
<td>62.6</td>
</tr>
<tr>
<td></td>
<td>σ (%)</td>
<td></td>
<td>1.43</td>
<td>1.06</td>
<td>1.40</td>
<td>1.53</td>
</tr>
<tr>
<td>10-fold</td>
<td>α (%)</td>
<td></td>
<td>78.92</td>
<td>82.06</td>
<td>58.96</td>
<td>60.86</td>
</tr>
<tr>
<td></td>
<td>min (%)</td>
<td></td>
<td>77.8</td>
<td>80.6</td>
<td>57.2</td>
<td>59.4</td>
</tr>
<tr>
<td></td>
<td>max (%)</td>
<td></td>
<td>79.6</td>
<td>83.4</td>
<td>60.6</td>
<td>68.6</td>
</tr>
<tr>
<td></td>
<td>σ (%)</td>
<td></td>
<td>0.48</td>
<td>0.83</td>
<td>1.03</td>
<td>2.65</td>
</tr>
</tbody>
</table>

4.1.2. Hasil Pengujian Rata-Rata Keakuratan dan Simpangan Baku untuk Metode PCA

Gambar 4.1. Rata-Rata Keakuratan Jumlah Principal Component untuk PD1.

Gambar 4.2. Rata-Rata Keakuratan Jumlah Principal Component untuk PD2.
Gambar 4.3. Rata-Rata Keakuratan Jumlah Principal Component untuk PD3.


Dari grafik yang telah disajikan, terlihat bahwa jenis dataset mempengaruhi rata-rata keakuratan dari tiap nop. Seperti yang telah disebutkan sebelumnya, untuk percobaan PCA ini dipilih nop yang memiliki hasil keakuratan paling tinggi, sehingga dari grafik tersebut didapatkan hasil sebagai berikut, PD1 menggunakan nop 210, PD2 menggunakan

<table>
<thead>
<tr>
<th>cross validation</th>
<th>Jenis</th>
<th>Jenis Dataset</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PD1</td>
<td>PD2</td>
</tr>
<tr>
<td>2-fold</td>
<td>α (%)</td>
<td>77.14</td>
</tr>
<tr>
<td></td>
<td>min (%)</td>
<td>74.2</td>
</tr>
<tr>
<td></td>
<td>max (%)</td>
<td>79.8</td>
</tr>
<tr>
<td></td>
<td>σ (%)</td>
<td>1.88</td>
</tr>
<tr>
<td></td>
<td>nop</td>
<td>210</td>
</tr>
<tr>
<td>5-fold</td>
<td>α (%)</td>
<td>77.32</td>
</tr>
<tr>
<td></td>
<td>min (%)</td>
<td>73.8</td>
</tr>
<tr>
<td></td>
<td>max (%)</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>σ (%)</td>
<td>1.89</td>
</tr>
<tr>
<td></td>
<td>nop</td>
<td>210</td>
</tr>
<tr>
<td>10-fold</td>
<td>α (%)</td>
<td>77.38</td>
</tr>
<tr>
<td></td>
<td>min (%)</td>
<td>73.8</td>
</tr>
<tr>
<td></td>
<td>max (%)</td>
<td>80.2</td>
</tr>
<tr>
<td></td>
<td>σ (%)</td>
<td>2.24</td>
</tr>
<tr>
<td></td>
<td>nop</td>
<td>210</td>
</tr>
</tbody>
</table>

4.1.3. Hasil Pengujian Rata-Rata Keakuratan dan Simpangan Baku untuk Metode LDA

Berdasarkan penjelasan dari Subbab 4.1, maka telah dijelaskan Tabel 4.1 merupakan tabel perbedaan jenis dataset yang digunakan untuk tiap metode. Tabel 4.4 berikut merupakan tabel hasil rata-rata keakuratan dan standar deviasi dari metode LDA berdasarkan cross validation dan perbedaan jenis dataset yang digunakan sesuai dengan Tabel 4.1. Untuk metode LDA ini telah dilakukan pengujian terhadap jumlah fitur ($f_{LDA}$) dari dataset. Pengujian dilakukan terhadap nilai $f_{LDA}$ dengan rentang 1 sampai dengan 760. Dari pengujian terhadap $f_{LDA}$ tersebut didapatkan rata-rata keakuratan dari masing-masing $f_{LDA}$ yang telah diuji, $f_{LDA}$ yang menghasilkan rata-rata keakuratan paling tinggi dipilih sebagai nilai $f_{LDA}$ untuk sistem pengenalan gender ini sesuai dengan jenis dataset yang digunakan. Gambar 4.5, Gambar 4.6, Gambar 4.7, dan Gambar 4.8 merupakan grafik yang menunjukkan hasil dari pengujian $f_{LDA}$ untuk masing-masing jenis dataset PD1, PD2, PD3,
dan PD4. Untuk tabel lengkap mengenai pengujian $f_{LDA}$ ini dapat dilihat pada Lampiran C.3.

Gambar 4.5. Rata-Rata Keakuratan Jumlah Fitur untuk PD1.

Dari grafik yang telah disajikan, terlihat bahwa jenis dataset mempengaruhi rata-rata keakuratan dari tiap $f_{LDA}$. Seperti yang telah disebutkan sebelumnya, untuk percobaan LDA ini dipilih $f_{LDA}$ yang memiliki hasil keakuratan paling tinggi, sehingga dari grafik tersebut didapatkan hasil sebagai berikut PD1 menggunakan $f_{LDA}$ 760, PD2 menggunakan...
f_{LDA} 750, PD3 menggunakan f_{LDA} 760, dan PD4 menggunakan f_{LDA} 750. Dari hasil pengujian terhadap f_{LDA} tersebut, kemudian dilakukan pengujian lebih lanjut untuk 2-fold cross validation, 5-fold cross validation, dan 10-fold cross validation. Hasil rata-rata keakuratan dan simpangan baku untuk metode LDA ini tertera pada Tabel 4.4 di bawah ini.

<table>
<thead>
<tr>
<th>cross validation</th>
<th>Jenis</th>
<th>Jenis Dataset</th>
<th>2-fold</th>
<th></th>
<th></th>
<th></th>
<th>5-fold</th>
<th></th>
<th></th>
<th></th>
<th>10-fold</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>α (%)</td>
<td></td>
<td>78.54</td>
<td>79.78</td>
<td>58.12</td>
<td>60.76</td>
<td>80.38</td>
<td>81.92</td>
<td>61.92</td>
<td>63.56</td>
<td>81.08</td>
<td>82.56</td>
<td>62.66</td>
</tr>
<tr>
<td></td>
<td>min (%)</td>
<td></td>
<td>77.2</td>
<td>76.6</td>
<td>55</td>
<td>58.2</td>
<td>77</td>
<td>80</td>
<td>58.4</td>
<td>61.6</td>
<td>76.0</td>
<td>75.0</td>
<td>76.0</td>
</tr>
<tr>
<td></td>
<td>max (%)</td>
<td></td>
<td>80.8</td>
<td>82.4</td>
<td>59.4</td>
<td>62.8</td>
<td>83</td>
<td>83.4</td>
<td>64.6</td>
<td>66</td>
<td>83</td>
<td>84</td>
<td>65.8</td>
</tr>
<tr>
<td></td>
<td>σ (%)</td>
<td></td>
<td>1.05</td>
<td>1.97</td>
<td>1.35</td>
<td>1.62</td>
<td>1.99</td>
<td>1.15</td>
<td>1.82</td>
<td>1.34</td>
<td>1.45</td>
<td>1.05</td>
<td>2.44</td>
</tr>
<tr>
<td></td>
<td>f_{LDA}</td>
<td></td>
<td>760</td>
<td>750</td>
<td>760</td>
<td>750</td>
<td>760</td>
<td>750</td>
<td>760</td>
<td>750</td>
<td>760</td>
<td>750</td>
<td>750</td>
</tr>
</tbody>
</table>

4.1.4. Hasil Pengujian Rata-Rata Keakuratan dan Simpangan Baku untuk Citra Cropping yang Diperkecil Ukurannya

Hasil pengujian pada subbab ini merupakan hasil pengujian dari PD1, namun ukuran citranya diperkecil menjadi 16 × 12 piksel, 8 × 6 piksel, dan 3 × 4 piksel. Tabel 4.5 dibawah ini menunjukkan hasil pengujian tersebut. Untuk hasil pengujian selengkapnya terdapat pada lampiran C.4.

<table>
<thead>
<tr>
<th>cross validation</th>
<th>Metode</th>
<th>Jenis</th>
<th>Ukuran Citra</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>24 × 32</td>
</tr>
<tr>
<td>2-fold</td>
<td>Subtraction</td>
<td>α (%)</td>
<td>78.46</td>
</tr>
<tr>
<td></td>
<td></td>
<td>min (%)</td>
<td>76.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>max (%)</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>σ (%)</td>
<td>1.15</td>
</tr>
</tbody>
</table>

35
<table>
<thead>
<tr>
<th>Method</th>
<th>$\bar{x}$ (%)</th>
<th>min (%)</th>
<th>max (%)</th>
<th>$\sigma$ (%)</th>
<th>$f_{\text{LDA}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCA</td>
<td>77.14</td>
<td>76.96</td>
<td>72.5</td>
<td>57.92</td>
<td></td>
</tr>
<tr>
<td></td>
<td>74.2</td>
<td>75.4</td>
<td>71</td>
<td>55.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>79.8</td>
<td>77.8</td>
<td>75</td>
<td>60.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.88</td>
<td>0.73</td>
<td>1.13</td>
<td>1.87</td>
<td></td>
</tr>
<tr>
<td></td>
<td>210</td>
<td>100</td>
<td>25</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>LDA</td>
<td>78.54</td>
<td>77.2</td>
<td>72.58</td>
<td>62.62</td>
<td></td>
</tr>
<tr>
<td></td>
<td>77.2</td>
<td>74.4</td>
<td>69.4</td>
<td>60.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>80.8</td>
<td>78.4</td>
<td>74.8</td>
<td>64.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.05</td>
<td>1.17</td>
<td>1.52</td>
<td>1.34</td>
<td></td>
</tr>
<tr>
<td></td>
<td>760</td>
<td>190</td>
<td>40</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\bar{x}$ (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>min (%)</td>
<td>76</td>
<td>74.4</td>
<td>69.4</td>
<td>60.4</td>
</tr>
<tr>
<td></td>
<td>max (%)</td>
<td>81.4</td>
<td>79.2</td>
<td>74.2</td>
<td>66.6</td>
</tr>
<tr>
<td></td>
<td>$\sigma$ (%)</td>
<td>1.43</td>
<td>0.86</td>
<td>0.76</td>
<td>1.07</td>
</tr>
<tr>
<td></td>
<td>$f_{\text{LDA}}$</td>
<td>760</td>
<td>190</td>
<td>40</td>
<td>10</td>
</tr>
<tr>
<td>Subtraction</td>
<td>77.32</td>
<td>77.02</td>
<td>73.28</td>
<td>58.82</td>
<td></td>
</tr>
<tr>
<td>PCA</td>
<td>73.8</td>
<td>76.2</td>
<td>71.6</td>
<td>56.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>79.4</td>
<td>75</td>
<td>61.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.89</td>
<td>1.10</td>
<td>1.03</td>
<td>1.78</td>
<td></td>
</tr>
<tr>
<td></td>
<td>210</td>
<td>100</td>
<td>25</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>LDA</td>
<td>81.08</td>
<td>78.2</td>
<td>74.32</td>
<td>66.42</td>
<td></td>
</tr>
<tr>
<td></td>
<td>78.8</td>
<td>75.2</td>
<td>72.6</td>
<td>63.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>83</td>
<td>81</td>
<td>77.6</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.45</td>
<td>1.70</td>
<td>1.53</td>
<td>1.60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>760</td>
<td>190</td>
<td>40</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\bar{x}$ (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>min (%)</td>
<td>77.8</td>
<td>76</td>
<td>72.4</td>
<td>63.8</td>
</tr>
<tr>
<td></td>
<td>max (%)</td>
<td>79.6</td>
<td>79.2</td>
<td>73.6</td>
<td>66.6</td>
</tr>
<tr>
<td></td>
<td>$\sigma$ (%)</td>
<td>0.48</td>
<td>1.14</td>
<td>0.46</td>
<td>0.80</td>
</tr>
<tr>
<td></td>
<td>$f_{\text{LDA}}$</td>
<td>77.36</td>
<td>77.4</td>
<td>72.94</td>
<td>59.06</td>
</tr>
<tr>
<td></td>
<td>min (%)</td>
<td>73.8</td>
<td>75.6</td>
<td>71.8</td>
<td>58.2</td>
</tr>
<tr>
<td></td>
<td>max (%)</td>
<td>80.2</td>
<td>79</td>
<td>73.6</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>$\sigma$ (%)</td>
<td>2.24</td>
<td>1.17</td>
<td>0.53</td>
<td>0.64</td>
</tr>
<tr>
<td></td>
<td>$f_{\text{LDA}}$</td>
<td>210</td>
<td>100</td>
<td>25</td>
<td>6</td>
</tr>
<tr>
<td>5-fold</td>
<td>$\bar{x}$ (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCA</td>
<td>79.6</td>
<td>79.2</td>
<td>73.6</td>
<td>66.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>73.8</td>
<td>75.6</td>
<td>71.8</td>
<td>58.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>80.2</td>
<td>79</td>
<td>73.6</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.24</td>
<td>1.17</td>
<td>0.53</td>
<td>0.64</td>
<td></td>
</tr>
<tr>
<td></td>
<td>210</td>
<td>100</td>
<td>25</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>LDA</td>
<td>80.38</td>
<td>78.18</td>
<td>73.96</td>
<td>65.98</td>
<td></td>
</tr>
<tr>
<td></td>
<td>77</td>
<td>76.4</td>
<td>72</td>
<td>61.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>83</td>
<td>80.4</td>
<td>75.6</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\sigma$ (%)</td>
<td>1.99</td>
<td>1.44</td>
<td>1.18</td>
<td>2.74</td>
</tr>
<tr>
<td></td>
<td>$f_{\text{LDA}}$</td>
<td>760</td>
<td>190</td>
<td>40</td>
<td>10</td>
</tr>
</tbody>
</table>
4.1.5. Hasil Pengujian Rata-Rata Keakuratan Ketiga Metode Digambarkan Dalam Grafik

Untuk memudahkan dalam menganalisa hasil pengujian yang telah didapatkan, maka Tabel 4.2, Tabel 4.3, Tabel 4.4 dapat digambarkan dalam grafik hasil pengujian pada sebagai berikut.

Gambar 4.9. Grafik Rata-Rata Keakuratan Ketiga Metode dan Jenis Dataset.

4.1.6. Analisis Hasil Pengujian Berdasarkan Metode yang Digunakan

Dari hasil pengujian perangkat lunak sistem pengenal gender ini, rata-rata keakuratan paling tinggi dihasilkan oleh metode LDA dan 10-fold cross validation, yaitu sebesar 81.08% untuk jenis dataset PD1, 82.56% untuk jenis dataset PD2, 62.66% untuk jenis dataset PD3, dan 64.24% untuk jenis dataset PD4. Sesuai dengan teori yang telah dijelaskan sebelumnya, LDA memaksimalkan penyebaran data-data input di antara kelas-kelas yang berbeda dan meminimalkan penyebaran input pada kelas yang sama. Oleh karena itu, LDA bekerja lebih baik dibandingkan PCA dan subtraction dalam hal diskriminasi fitur wajah untuk sistem pengenalan gender ini.

Rata-rata keakuratan paling rendah untuk sistem pengenalan gender ini ternyata diperoleh dari metode PCA untuk keseluruhan jenis dataset dan keseluruhan pengujian keakuratan menggunakan 2-fold cross validation, 5-fold cross validation, dan 10-fold cross validation.
validation. Untuk metode subtraction yang hanya menerapkan pengurangan terhadap piksel yang ada ternyata memiliki performa yang lebih baik daripada metode PCA.

4.1.7. Analisis Hasil Pengujian Berdasarkan Variasi Cross Validation

Dari hasil pengujian perangkat lunak sistem pengenalan gender ini, diperoleh hasil bahwa 10-fold cross validation memiliki performa yang paling baik dibandingkan dengan 2-fold cross validation dan 5-fold cross validation. Hal tersebut disebabkan oleh jumlah data training untuk 10-fold cross validation lebih banyak dibandingkan dengan 2-fold cross validation dan 5-fold cross validation. 2-fold cross validation memiliki data training berjumlah 250 buah dan data testing berjumlah 250 buah, 5-fold cross validation memiliki data training berjumlah 400 buah dan data testing berjumlah 100 buah, dan 10-fold cross validation memiliki data training berjumlah 450 buah dan data testing berjumlah 50 buah. Hal tersebut menunjukkan bahwa jumlah data training yang dimiliki berpengaruh pada hasil pengujian sistem pengenalan gender ini. Semakin banyak data training, hasil rata-rata keakuratan yang didapatkan juga semakin tinggi.

4.1.8. Analisis Hasil Pengujian Berdasarkan Jenis Dataset Citra Wajah

Dari hasil pengujian perangkat lunak sistem pengenalan gender ini, jenis dataset citra pelatihan mempengaruhi hasil rata-rata keakuratan sistem pengenalan gender yang didapatkan. Untuk dataset yang tidak memiliki responden berkacamata memiliki hasil keakuratan lebih rendah dibandingkan dengan dataset yang memiliki responden berkacamata.

4.1.9. Analisis Hasil Pengujian Terhadap Citra yang Dilakukan Cropping dan Tidak Cropping

Dari hasil pengujian perangkat lunak sistem pengenalan gender ini, citra yang dilakukan cropping menghasilkan rata-rata keakuratan yang lebih tinggi dibandingkan dengan citra yang tidak dilakukan cropping. Hasil pengujian menunjukkan perbedaan hasil rata-rata keakuratan yang cukup jauh antara citra yang dilakukan cropping dan tidak dilakukan cropping. Hal ini disebabkan oleh ekstraksi fitur pada citra yang tidak dilakukan cropping bukan pada bagian wajah dari orang tersebut, namun ekstraksi fitur juga dilakukan pada bagian background dari citra tersebut.
4.1.10. Analisis Hasil Pengujian Terhadap Citra yang Diperkecil Ukurannya


4.2. Hasil Pengujian dan Analisis Waktu Komputasi

4.2.1. Hasil Pengujian Waktu Komputasi


<table>
<thead>
<tr>
<th>Tabel 4.6. Rata-Rata Waktu Komputasi PD1 (detik).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sl</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>Rata-rata waktu komputasi</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tabel 4.7. Rata-Rata Waktu Komputasi PD2 (detik).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sl</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>Rata-rata waktu komputasi</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sl</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>Rata-rata waktu komputasi</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rata-rata waktu komputasi</th>
<th>Subtraction</th>
<th>PCA</th>
<th>LDA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.049019</td>
<td>0.104125</td>
<td>0.264509</td>
</tr>
</tbody>
</table>

Tabel 4.10 berikut adalah spesifikasi komputer (laptop) yang digunakan untuk melakukan pengujian rata-rata keakuratan dan waktu komputasi pada skripsi ini.

Tabel 4.10. Spesifikasi Komputer yang Digunakan pada Skripsi.

<table>
<thead>
<tr>
<th>Jenis Spesifikasi</th>
<th>Yang Digunakan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor</td>
<td>Intel® Core™ i5</td>
</tr>
<tr>
<td>RAM</td>
<td>2.00 GB</td>
</tr>
<tr>
<td>System Type</td>
<td>Windows 7 Ultimate</td>
</tr>
<tr>
<td>Software</td>
<td>Matlab 7.1</td>
</tr>
</tbody>
</table>

4.2.2. Analisis Hasil Pengujian Waktu Komputasi

Dari hasil pengujian perangkat lunak sistem pengenalan gender terhadap waktu komputasi terlihat bahwa waktu komputasi paling cepat ditunjukkan oleh metode subtraction untuk semua jenis dataset dengan rata-rata waktu komputasi sebesar 0.05 detik. Untuk metode PCA menghasilkan rata-rata waktu komputasi sebesar 0.11 detik dan metode LDA menghasilkan rata-rata waktu komputasi paling lama yaitu sebesar 0.26 detik. Metode subtraction menghasilkan rata-rata waktu komputasi paling cepat karena metode ini hanya menerapkan pengurangan terhadap piksel tanpa melakukan ektraksi fitur.

4.2.3. Hasil Pengujian dan Analisis Tambahan

Pada bagian ini disajikan grafik dari contoh citra wajah pria Gambar 3.2 (PD3 dan PD4) dan Gambar 3.4 (PD1 dan PD2), serta contoh citra wajah wanita Gambar 3.3 (PD3 dan PD4) dan Gambar 3.5 (PD1 dan PD2) yang menjadi data masukan pada nearest neighbor. Gambar 4.10 merupakan grafik perbandingan vektor kolom untuk seluruh jenis dataset yang digunakan pada nearest neighbor sebagai masukan untuk metode subtraction, Gambar 4.11 merupakan grafik perbandingan jumlah principal component (nop) untuk seluruh jenis dataset yang digunakan pada nearest neighbor sebagai masukan untuk metode PCA, dan Gambar 4.12 merupakan grafik perbandingan jumlah fitur (f_i,DA) untuk jenis dataset digunakan pada nearest neighbor sebagai masukan untuk metode LDA.


Gambar 4.15. Grafik Perbandingan Jumlah Fitur ($f_{\text{LDA}}$) untuk PD2.

Dari grafik yang telah disajikan, grafik metode PCA merupakan grafik yang paling sulit digunakan untuk mengenali pria dan wanita, walaupun hanya fitur-fitur penting dari wajah yang digunakan sebagai masukan data yang akan dilakukan klasifikasi nearest neighbor, sedangkan grafik subtraction dan LDA terlihat lebih mudah untuk menentukan perbedaan antara pria dan wanita untuk keseluruhan jenis dataset citra.