Please use this identifier to cite or link to this item: https://repository.uksw.edu//handle/123456789/14698
Title: Analisis Data Mahasiswa Baru Menggunakan Metode Autoregresif Integrated Moving Average (ARIMA) (Studi Kasus: UKSW Salatiga)
Authors: Agusta, Irvan
Keywords: ARIMA;time series;peramalan
Issue Date: 2015
Publisher: Program Studi Sistem Informasi FTI-UKSW
Abstract: Jumlah mahasiswa suatu perguruan tinggi adalah hal yang penting dalam kehidupan peruguruan tinggi. Masing-masing perguruan tinggi bersaing untuk meningkatkan jumlah mahasiswanya. Promosi dalam rangka menjaring mahasiswa baru juga giat dilakukan di seluruh daerah. Berdasarkan data mahasiswa baru dalam time series, dapat dilihat berbagai informasi, seperti jumlah mahasiswa baru setiap tahun . Berdasarkan data mahasiswa tersebut, dapat dilakukan peramalan untuk mahasiswa baru berikutnya. Sehingga diharapkan, promosi yang dilakukan dapat sesuai sasaran. Motede peramalan yang digunakan adalah Autoregresif Integrated Moving Average (ARIMA) untuk meramalkan jumlah mahasiswa 2 tahun berikutnya.
Number of college students is an important thing in the life of the college. Each of these colleges to increase the number of students competing. Promotion in order to attract new students also actively conducted throughout the area. Based on data from the new student, can be seen a variety of information, such as the number of new students each year, the amount each program of study, the amount of each area, even to the amount each school in the area. Based on the student data, forecasting can be done next to new students. So hopefully, promotion can be done on target. Motede forecasting used was autoregressive Integrated Moving Average (ARIMA) to predict the number of students the next 2 years.
URI: http://repository.uksw.edu/handle/123456789/14698
Appears in Collections:T1 - Information Systems

Files in This Item:
File Description SizeFormat 
T1_682010602_Abstract.pdfAbstract123.82 kBAdobe PDFView/Open
T1_682010602_Full text.pdfFull tect2.31 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.