Please use this identifier to cite or link to this item:
https://repository.uksw.edu//handle/123456789/26225
Title: | Perbandingan Metode Single, Double, dan Triple Exponential Smoothing Peramalan Covid di Indonesia |
Authors: | Renatha, Nadia |
Keywords: | covid-19;virus;penyakit;kematian;Indonesia |
Issue Date: | 14-Jun-2022 |
Abstract: | Wabah Covid-19 adalah penyakit menular serta dapat menyerang organ pernapasan yang sangat mematikan di Negara Tiongkok. masyarakat Indonesia yang terjangkit virus Covid-19 ini perlu dilakukan peramalan untuk mengetahui jumlah kasus masyarakat yang terjangkit wabah Covid-19 pada bulan berikutnya. Metode Single Exponential Smoothing, Double Exponential Smoothing, dan Triple Exponential Smoothing menggunakan aplikasi RStudio untuk mengetahui nilai parameter α, β, dan γ. Perbandingan dari ketiga metode tersebut menggunakan parameter nilai α, β, dan γ. Metode tersebut dicari nilai SSE yang terkecil. Nilai SSE yang terkecil maka akan didapatkan hasil peramalan yang lebih akurat. Data yang digunakan berjumlah 30 periode. Menggunakan 30 periode mendapatkan nilai SSE terkecil 33042318. Nilai tersebut mendapatkan nilai coefficient 1179.6161 atau masyarakat yang terjangkit wabah covid 2019 pada hari berikutnya berjumlah 1741 orang. The Covid-19 outbreak is an infectious disease and can attack the respiratory organs which is very deadly in China. For the people of Indonesia who have been infected with the Covid-19 virus, forecasting needs to be done to find out the number of cases of people who have contracted the Covid-19 outbreak in the following month. Single Exponential Smoothing, Double Exponential Smoothing, and Triple Exponential Smoothing methods use the RStudio application to determine the parameter values of α , β , and γ. The comparison of the three methods uses the parameter values of α, β, and γ. The method looks for the smallest SSE value. The smallest SSE value will get more accurate forecasting results. The data used are 30 periods. Using 30 periods, the smallest SSE value is 33042318. This value gets a coefficient value of 1179.6161 or people who are infected with the 2019 covid outbreak on the next day amounting to 1741 people. |
URI: | https://repository.uksw.edu/handle/123456789/26225 |
Appears in Collections: | T1 - Informatics Engineering |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
T1_672018004_Daftar Pustaka.pdf | 383.29 kB | Adobe PDF | View/Open | |
T1_672018004_Isi.pdf Restricted Access | 977.14 kB | Adobe PDF | View/Open | |
T1_672018004_Judul.pdf | 1.6 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.