Please use this identifier to cite or link to this item:
https://repository.uksw.edu//handle/123456789/29057
Title: | Model EGARCH–CJ Berdistribusi Skewed–T Versi Jones–Faddy untuk Error dari Return |
Other Titles: | EGARCH-CJ Model with Jones–Faddy’s Skewed–T Distribution for Return Error |
Authors: | Putri, Benita Dwitya |
Keywords: | distribusi Skewed-t;komponen lompatan dan kontinu;metode ARWM;model EGARCH |
Issue Date: | 11-Jan-2023 |
Abstract: | Volatilitas merupakan salah satu aspek penting yang perlu diamati oleh para pelaku pasar keuangan karena volatilitas merupakan fluktuasi dari return selama periode tertentu. Salah satu cara untuk mengukur risiko dalam pasar keuangan adalah dengan memodelkan volatilitas. Pemodelan volatilitas asimetris yang digunakan sebagai fokus pada penelitian ini adalah model EGARCH (Exponentiated Generalized Autoregressive Conditional Heteroskedasticity), EGARCH–X (EGARCH dengan variabel eksogen X), dan EGARCH–CJ (EGARCH dengan perluasan variabel eksogen menjadi Continuous/Kontinu dan Jump/Lompatan). Model-model tersebut diaplikasikan pada distribusi Normal dan distribusi Jones-Faddy Skewed–t (JFST) untuk error dari return, sebagai perbandingan dalam mencari pencocokan model yang lebih baik. Penelitian ini menggunakan metode Adaptive Random Walk Metropolis (ARWM) yang akan diimplementasikan pada algoritma Markov Chain Monte Carlo (MCMC) pada aplikasi Matlab untuk mengetahui hasil estimasi nilai-nilai parameter yang konvergen. Selanjutnya data riil yang digunakan sebagai studi kasus pada penelitian ini adalah data Tokyo Stock Price Index (TOPIX) atas periode harian mulai dari Januari 2004 hingga Desember 2011. Dari hasil penelitian yang telah dilakukan, dapat disimpulkan bahwa metode ARWM sudah cukup efisien untuk mengestimasi setiap parameter model, yang mana dapat dilihat pada plot estimasi nilai-nilai parameter yang telah konvergen. Selanjutnya dari hasil perhitungan estimasi, dapat diketahui bahwa model EGARCH–X berdistribusi JFST memiliki pencocokan data yang paling baik diantara model-model lain yang ada pada studi ini, hal ini dilihat berdasarkan nilai Aikaike Information Criterion (AIC) yang terkecil. Sementara itu jika kedua distribusi dibandingkan, maka dapat diketahui bahwa distribusi JFST lebih unggul karena memiliki nilai AIC yang lebih kecil secara signifikan daripada model berdistribusi Normal. Dari hasil yang telah diperoleh dari data TOPIX, tidak menutup kemungkinan bahwa model EGARCH–X tidak memiliki pencocokan data yang lebih baik untuk data yang lain, sehingga perlu adanya pengaplikasian kembali pada data yang berbeda untuk menunjukkan bahwa mungkin model EGARCH–CJ menyediakan pencocokan data yang lebih baik. Volatility is one of the important aspects that needs to be observed by financial market participants because volatility is the fluctuation of returns over a certain period. One way to measure risk in financial markets is by modeling volatility. Asymmetric volatility modeling used as the focus of this research is the EGARCH (Exponentiated Generalized Autoregressive Conditional Heteroskedasticity) model, EGARCH–X (EGARCH with exogenous variable X), and EGARCH–CJ (EGARCH with the expansion of exogenous variables into Continuous and Jump). These models will be applied to the Normal distribution and the Jones–Faddy Skewed–t (JFST) distribution for the return error, as a comparison to find a better model fit. This research uses the Adaptive Random Walk Metropolis (ARWM) method which will be implemented in the Markov Chain Monte Carlo (MCMC) algorithm in the Matlab application to determine the results of the estimation of convergent parameter values. Furthermore, the real data used as a case study in this research is the Tokyo Stock Price Index (TOPIX) data for the daily period from January 2004 to December 2011. From the research, it can be concluded that the ARWM method is efficient enough to estimate each parameter of the model, which can be seen in the plot of estimated parameter values that have converged. Furthermore, from the estimation calculation results, it can be seen that the EGARCH–X model with JFST distribution has the best data matching among other models in this study, this is seen based on the smallest Aikaike Information Criterion (AIC) value. Meanwhile, if the two distributions are compared, it can be seen that the JFST distribution is superior because it has a significantly smaller AIC value than the Normal distribution model. From the results that have been obtained from the TOPIX data, it is possible that the EGARCH-X model does not have a better data fit for other data, so it is necessary to reapply it to different data to show that perhaps the EGARCH–CJ model provides a better data fit. |
URI: | https://repository.uksw.edu//handle/123456789/29057 |
Appears in Collections: | T1 - Mathematics |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
T1_662019008_Judul.pdf | 3.4 MB | Adobe PDF | View/Open | |
T1_662019008_Bab I.pdf Until 9999-01-01 | 608.23 kB | Adobe PDF | View/Open | |
T1_662019008_Bab II.pdf Until 9999-01-01 | 1.42 MB | Adobe PDF | View/Open | |
T1_662019008_Bab III.pdf Until 9999-01-01 | 390.16 kB | Adobe PDF | View/Open | |
T1_662019008_Bab IV.pdf Until 9999-01-01 | 1.58 MB | Adobe PDF | View/Open | |
T1_662019008_Bab V.pdf Until 9999-01-01 | 293.13 kB | Adobe PDF | View/Open | |
T1_662019008_Daftar Pustaka.pdf | 419.96 kB | Adobe PDF | View/Open | |
T1_662019008_Lampiran.pdf Until 9999-01-01 | 4.15 MB | Adobe PDF | View/Open | |
T1_662019008_Lisensi dan Embargo.PDF Restricted Access | 2.97 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.