Please use this identifier to cite or link to this item:
https://repository.uksw.edu//handle/123456789/30670
Title: | Penerapan Algoritma Apriori dan FP-Growth untuk Market Basket Analisis pada Data Transaksi Non Promo |
Authors: | Pabendon, Andrew Aquila Chrisanto |
Keywords: | Apriori;FP-Growth;Association Rules;Market Basket Analisis;Market Basket Analysis |
Issue Date: | Jun-2023 |
Abstract: | Penelitian ini bertujuan untuk mencari aturan asosiasi berdasarkan transaksi member
Aksesmu pada item non promo. Metode pada penelitian ini menggunakan Association rules dengan menggunakan algoritma apriori dan FP-Growth untuk mendapatkan Frequent Itemset. Tahap analisis data dilakukan mulai dari Exploratory Data Analysis, Pre-Processing Data, Transformation Data, Data Mining, hingga mengevaluasi hasil aturan asosiasi yang terbentuk. Peneliti melakukan 4 kali percobaan dengan minimal support 0.02 dan minimal confidence 0.25 pada apriori dan FP-Growth merupakan yang terbaik dengan menghasilkan 52 frequent itemset dan 17 aturan asosiasi. Dengan dataset berjumlah 379.635, apriori lebih cepat dalam memproses frequent itemset dengan waktu 1.10 detik sedangkan FP-Growth dengan 1.86 detik. Apriori dan FP-Growth menghasilkan frequent itemset yang sama yaitu kategori tertinggi diperoleh SKT dengan support 0.32 dan SKM dengan support 0.26, tetapi untuk aturan asosiasi terbaik dihasilkan oleh kategori Extruded & Pellet dan Sweetened Condensed Milk dengan confidence 0.47. This research aims to find association rules based on the transactions of Aksesmu members on non-promo items. The method in this study uses Association rules using the a priori algorithm and FP-Growth to obtain Frequent Itemsets. The data analysis phase is carried out starting with Exploratory Data Analysis, Pre-Processing Data, Transformation Data, and Data Mining, to evaluate the results of the formed association rules. Researchers conducted 4 experiments with a minimum support of 0.02 and a minimum confidence of 0.25 on a priori and FP-Growth was the best by producing 52 frequent itemsets and 17 association rules. With a dataset of 379,635, a priori is faster in processing frequent itemsets with a time of 1.10 seconds while FP-Growth is with 1.86 seconds. Apriori and FP-Growth produce the same frequent itemset, namely the highest category is obtained by SKT with a support of 0.32 and SKM with a support of 0.26, but the best association rules are produced by the Extruded & Pellet and Sweetened Condensed Milk categories with a confidence of 0.47. |
URI: | https://repository.uksw.edu//handle/123456789/30670 |
Appears in Collections: | T1 - Informatics Engineering |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
T1_672019196_Judul.pdf | 1.4 MB | Adobe PDF | View/Open | |
T1_672019196_Isi.pdf Until 9999-01-01 | 735.74 kB | Adobe PDF | View/Open | |
T1_672019196_Daftar Pustaka.pdf | 227.79 kB | Adobe PDF | View/Open | |
T1_672019196_Formulir Pernyataan Persetujuan Penyerahan Lisensi Noneksklusif Tugas Akhir dan Pemilihan Embargo.pdf Restricted Access | 362.88 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.