Please use this identifier to cite or link to this item: https://repository.uksw.edu//handle/123456789/31087
Title: Clustering Kualitas Kinerja Pegawai pada Naruna Cafe and Resto Menggunakan Algoritma K-Means
Authors: Hematang, Corins Petricks
Keywords: Algoritma K-means;Klastering;RapidMiner;Clustering
Issue Date: 30-Jun-2023
Abstract: Sistem penilaian pegawai di Naruna Cafe and Resto menggunakan metode penilaian konvensional berbasis manual yang dilakukan secara subjektif oleh atasan langsung tanpa adanya kerangka evaluasi yang jelas sehingga proses penilaian seringkali tidak transparan dan kurang objektif. Penelitian ini bertujuan untuk menerapkan metode K-Means Clustering, serta menggunakan algoritma K-means untuk memudahkan dalam melakukan perhitungan, setelah itu dilakukan pengolahan data menggunakan aplikasi RapidMiner untuk mendapatkan hasil pada penilaian kualitas kinerja pegawai Naruna Cafe and Resto. Pada penelitian ini menggunakan metode penelitian kuantitatif dan mengambil data berdasarkan kualitas kinerja pengawai sebagai objek dalam penelitian. Penelitian ini menghasilkan cluster dengan kualitas kerja sangat memuaskan sebanyak 1 data, cluster dengan kualitas kerja memuaskan sebanyak 3 data, cluster dengan kualitas kerja cukup memuaskan sebanyak 4 data, cluster dengan kualitas kerja kurang memuaskan sebanyak 1 data, dan cluster dengan kualitas kerja tidak memuaskan sebanyak 5 data. Berdasarkan pengolahan data yang sudah dilakukan, didapatkan kesimpulan bahwa penelitian ini telah berhasil membuat kelompok kualitas kinerja pegawai yang ada di Naruna Cafe and Resto yang bisa dipakai dalam melihat kinerja pegawai.
The employee appraisal system at Naruna Cafe and Resto uses conventional, manual- based appraisal methods which are carried out subjectively by the direct supervisor without a clear evaluation framework so that the appraisal process is often not transparent and lacks objectivity, which causes dissatisfaction and injustice among employees. This study aims to apply the K-Means Clustering method, as well as use the K-means algorithm to make it easier to perform calculations, after which the researcher performs processing using RapidMiner to obtain results on the performance quality assessment of Naruna Cafe and Resto employees. This study uses quantitative research methods and collects data based on the quality of employee performance as an object of research. This study produced clusters with very satisfactory work quality of as much as 1 data, clusters with satisfactory work quality of as many as 3 data, clusters with quite satisfactory work quality of as much as 4 data, clusters with unsatisfactory work quality of as much as 1 data, and clusters with unsatisfactory work quality as much as 5 data. From the data processing that has been done, it can be concluded that this research has succeeded in creating a quality group of employee performance at Naruna Cafe and Resto that can be used to view employee performance.
URI: https://repository.uksw.edu//handle/123456789/31087
Appears in Collections:T1 - Informatics Engineering

Files in This Item:
File Description SizeFormat 
T1_672017186_Judul.pdf1.39 MBAdobe PDFView/Open
T1_672017186_Isi.pdf
  Until 9999-01-01
997.5 kBAdobe PDFView/Open
T1_672017186_Daftar Pustaka.pdf441.38 kBAdobe PDFView/Open
T1_672017186_lampiran.pdf171.15 kBAdobe PDFView/Open
T1_672017186_Formulir Pernyataan Penyerahan Lisensi Noneksklusif dan Pilihan Embargo.pdf
  Restricted Access
528.28 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.