Please use this identifier to cite or link to this item: https://repository.uksw.edu//handle/123456789/31164
Title: Analisa Segmentasi Customer Pada Perusahaan Bisnis Properties Menggunakan Model RFM ( Studi Kasus PT. Pollux Aditama Kencana)
Authors: Arseta, Gama
Keywords: Loyalitas Customer;RFM;K-Means;Klusterisasi;customer loyalty;clustering
Issue Date: 13-Jun-2023
Abstract: The current business development in the property industry is promising, leading to a highly competitive market. As a result, PT. Pollux Aditama Kencana, which operates in the property business, must have strategies in every market competition, especially in gaining customer loyalty. This study uses the Recency, Frequency, and Monetary (RFM) model combined with K-Means. The RFM model is used for customer data clustering based on the number of transaction activities, transaction amount, and transaction time. Meanwhile, K-Means can describe the level of customer loyalty. The data used in this study were taken from sales reports from November 28, 2014 to September 19, 2022, involving 1966 customers in property purchases. The results show that the proposed use of the RFM and K-Means models is superior compared to using only the RFM model. Cluster 1 has 936 customers, indicating customers with high loyalty to the company, while Cluster 2 has 250 customers, indicating customers with low loyalty, and Cluster 3 has 780 customers, indicating customers with medium loyalty. The RFM and K-Means models used successfully produced several loyalty attributes that affect customer evaluations, with 4% in the top customer category, 12% in the high-value customer category, 34% in the medium-value customer category, 31% in the low-value customer category, and 19% in the lost customer category. Keywords: customer loyalty, RFM, K-Means, clustering
Perkembangan bisnis di bidang properti saat ini banyak yang menjanjikan. Sehingga menyebabkan persaingan bisnis yang begitu ketat. PT. Pollux Aditama Kencana yang bergerak dibidang bisnis properti harus memiliki strategi dalam setiap persaingan pasar, khususnya dalam meraih loyalitas customer. Penelitian ini menggunakan model Recency, Frequency, dan Monetary (RFM) yang dikombinasikan dengan K-Means. Model RFM digunakan untuk untuk proses klasterisasi data customer berdasarkan jumlah aktivitas transaksi, nominal transaksi, dan waktu transaksi. Sedangkan K-Means dapat menggambarkan tingkat loyalitas customer. Data yang digunakan pada penelitian ini diambil dari sales report pada 28 November 2014 sampai 19 September 2022 terhadap 1966 customer pada pembelian properti. Hasil menunjukan penggunaan model RFM dan KMeans yang diusulkan lebih unggul disbandingkan hanya menggunakan model RFM saja. Cluster ke-1 memiliki 936 customer menjelaskan tentang customer yang memiliki loyalitas tinggi terhadap perusahaan, sedangkan cluster ke-2 memiliki 250 customer menjelaskan tentang customer yang memiliki loyalitas rendah, dan cluster ke-3 memiliki 780 customer menjelaskan tentang customer yang memiliki loyalitas sedang. Model RFM dan K-Means yang digunakan berhasil menghasilkan beberapa atribut loyalitas yang berpengaruh pada 6 penilaian customer dengan nilai 4% berada di top customer, 12% high value customer, 34% medium value customer, 31% low value customer, 19% lost customer.
URI: https://repository.uksw.edu//handle/123456789/31164
Appears in Collections:T1 - Informatics Engineering

Files in This Item:
File Description SizeFormat 
TI_672019177_Judul.pdf942.13 kBAdobe PDFView/Open
TI_672019177_Isi.pdf
  Until 9999-01-01
1.32 MBAdobe PDFView/Open
TI_672019177_Daftar Pustaka.pdf367.63 kBAdobe PDFView/Open
T1_672019177_Formulir Pernyataan Persetujuan Penyerahan Lisensi Nonekslusif Tugas Akhir dan Pilihan Embargo.pdf.pdf
  Restricted Access
1.2 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.