Please use this identifier to cite or link to this item:
https://repository.uksw.edu//handle/123456789/32592
Title: | Perbandingan Kinerja Metode Support Vector Machine dan Logistic Regression untuk Klasifikasi pada Dataset Asthma |
Other Titles: | Performance Comparison of Support Vector Machine and Logistic Regression on Asthma Dataset Classification |
Authors: | Moelyono, Tiara Utary Grace |
Keywords: | Support Vector Machine;Logistic Regression;Klasifikasi;Akurasi;SNP |
Issue Date: | 5-Dec-2023 |
Abstract: | Single nucleotide polymorphisms (SNP) atau Polimorfisme Nukleotida Tunggal adalah salah satu jenis variasi genetik yang paling umum pada genom manusia. Salah satu contoh data SNP adalah data Asthma yang dipengaruhi oleh kondisi genetik manusia. Untuk melihat pengaruh SNP pada genetik manusia dapat dilakukan klasifikasi yang merupakan sebuah proses untuk memisahkan kelas data satu dengan yang lainnya. Penelitian ini bertujuan membandingkan performa metode Support Vector Machine dan Logistic Regression untuk klasifikasi pada dataset asthma. Empat statistik digunakan guna melihat tingkat kebaikan metode yaitu akurasi, presisi, recall, dan F1-Score. Pada proporsi data uji 20%, metode SVM lebih unggul dengan nilai median akurasi, presisi, recall, dan F1-Score sebesar 78,76%; 78,85%; 100%; 88,12% dibandingkan metode LR dengan hasil 77,09%; 79,34%; 96,09%; 78,14%. Single nucleotide polymorphisms (SNPs) are one of the most common types of genetic variation in the human genome. One example of SNP data is Asthma data which is influenced by human genetic conditions. To see the effect of SNPs on human genetics, classification can be done, which is a process to separate one class of data from another. This study aims to compare the performance of Support Vector Machine and Logistic Regression methods for classification on asthma datasets. Four statistics are used to see the goodness of the method, namely accuracy, precision, recall, and F1-Score. At a 20% test data proportion, the SVM method is superior with median values of accuracy, precision, recall, and F1-Score of 78.76%; 78.85%; 100%; 88.12% compared to the LR method with results of 77.09%; 79.34%; 96.09%; 78.14%. |
URI: | https://repository.uksw.edu//handle/123456789/32592 |
Appears in Collections: | T1 - Mathematics |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
T1_662020002_Judul.pdf | 638.2 kB | Adobe PDF | View/Open | |
T1_662020002_Isi.pdf Until 9999-01-01 | 524.6 kB | Adobe PDF | View/Open | |
T1_662020002_Daftar Pustaka.pdf | 257.96 kB | Adobe PDF | View/Open | |
T1_662020002_Lampiran.pdf Until 9999-01-01 | 240.43 kB | Adobe PDF | View/Open | |
T1_662020002_Formulir Pernyataan Persetujuan Penyerahan Lisensi dan Pilihan Embargo.pdf | 445.27 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.