Please use this identifier to cite or link to this item:
https://repository.uksw.edu//handle/123456789/35329
Title: | Prediksi Kelulusan Tepat Waktu Mahasiswa Untuk Pemantauan Program Studi Menggunakan Metode Data Mining |
Authors: | Rachardian, Seprima |
Keywords: | k-Nearest Neighbors;kelulusan;pemantauan |
Issue Date: | Sep-2024 |
Abstract: | Penelitian ini melakukan eksplorasi data (data mining) menggunakan data mahasiswa pada program studi sarjana (S1) di Universitas PQR tahun akademik 2023/2024. Penelitian bertujuan memprediksi kelulusan tepat waktu mahasiswa sesuai dengan syarat pemantauan Badan Akreditasi (masa studi tepat waktu mahasiswa adalah empat tahun). Parameter data pengujian menggunakan data master mahasiswa, data transaksi mahasiswa, dan data status kelulusan mahasiswa angkatan 2019 pada tahun akademik 2023/2024. Pengujian dilakukan menggunakan metode algoritma k-Nearest Neighbors (k-NN). Hasil data training diperoleh accuracy 75%, nilai precision 75%, dan nilai recall 0%. Data testing algoritma k-NN memperoleh hasil accuracy 87.76%, nilai precision 89.19%, dan nilai recall 83.33%. Hasil uji data training dan data testing menunjukkan persentase yang cukup tinggi untuk tidak lolos pemantauan. Pimpinan Perguruan Tinggi dapat mengambil langkah awal dari hasil prediksi tersebut, guna mengambil kebijakan akademik untuk meningkatkan lulusan tepat waktu. This research will conduct data exploration (data mining) using student data in the undergraduate study program (S1) at PQR University for the 2022/2023 academic year. The study aims to predict students' on-time graduation according to the monitoring requirements of the Accreditation Body (students' timely study period is four years). The test data parameters use student master data, student transaction data, and data on the graduation status of 2019 class students in the 2023/2024 academic year. Data testing and training were conducted using the k-Nearest Neighbors algorithm method. The data training obtained 75% accuracy, 75% precision, and 0% recall value. The data testing results obtained 87.76% accuracy, 89.19% precision, and 83.33% recall value. The data training and data testing results show a high percentage ofnot passing the monitoring. University leaders can take an early step based on the prediction results to make academic policies to increase the number ofon-time graduate |
URI: | https://repository.uksw.edu//handle/123456789/35329 |
Appears in Collections: | T2 - Master of Information Systems |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
T2_972023706_Judul.pdf | 3.11 MB | Adobe PDF | View/Open | |
T2_972023706_Isi.pdf Until 9999-01-01 | 3.2 MB | Adobe PDF | View/Open | |
T2_972023706_Daftar Pustaka.pdf | 2.92 MB | Adobe PDF | View/Open | |
T2_972023706_Formulir Pernyataan Penyerahan Lisensi Noneksklusif dan Pilihan Embargo Tugas Akhir.pdf Until 9999-01-01 | 1.18 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.