Please use this identifier to cite or link to this item:
https://repository.uksw.edu//handle/123456789/35732
Title: | Perbandingan Kinerja Metode Regresi Random Forest dan Metode Regresi Linear Berganda Pada Prediksi Laju Inflasi |
Other Titles: | Performance Comparison Of Random Forest Regression And Multiple Linear Regression Methods In Inflation Level Prediction |
Authors: | Prabowo, Fransiska Irene |
Keywords: | Regresi Linear Berganda;Regresi Random Forest;Laju Inflasi;Pulau Sumatera;Prediksi;multiple linear regression;random forest regression;inflation rate;prediction |
Issue Date: | 4-Dec-2024 |
Abstract: | Penelitian ini bertujuan untuk membandingkan kinerja metode regresi linear berganda dan regresi random forest dalam memprediksi laju inflasi di beberapa kota di Pulau Sumatera. Inflasi merupakan indikator penting dalam ekonomi makro, dan prediksi yang akurat sangat diperlukan untuk membantu pengambilan keputusan dalam kebijakan ekonomi. Data yang digunakan dalam penelitian ini mencakup laju inflasi bulanan dari Januari 2014 hingga Agustus 2024. Data diambil dari Berita Resmi Statistik yang diterbitkan oleh Badan Pusat Statistik Indonesia. Kedua model diuji dan dievaluasi menggunakan metrik kinerja seperti RMSE, MAE, MAPE, R². Penelitian ini membandingkan kinerja kedua metode menggunakan proporsi data latih P = 0.6 dan P = 0.8. Hasil analisis menunjukkan bahwa untuk P = 0.6, metode regresi linear berganda menghasilkan nilai median dari RMSE 0.92, MAE 0.67, MAPE 20.00%, dan R² 0.77. Sementara itu, regresi random forest pada P = 0.6 menunjukkan kinerja yang sedikit lebih buruk dengan nilai median dari RMSE 0.87, MAE 0.69, MAPE 21.71%, dan R² 0.73. Pada proporsi data latih yang lebih tinggi, yaitu P = 0.8, regresi linear berganda menghasilkan nilai median dari RMSE 0.60, MAE 0.52, MAPE 13.33%, dan R² 0.87. Di sisi lain, regresi random forest pada P = 0.8 menunjukkan nilai median dari RMSE 0.85, MAE 0.66, MAPE 16.82%, dan R² 0.73. Selain itu, dilakukan uji Wilcoxon dengan proporsi data P = 0.6 menunjukkan tidak ada perbedaan signifikan secara statistik antara model regresi linear berganda dan random forest. Namun, dengan proporsi data P = 0.8, terdapat perbedaan signifikan pada RMSE dan MAE yang berarti kedua model memiliki perbedaan kinerja yang signifikan untuk metrik ini. Secara keseluruhan, regresi linear berganda menghasilkan prediksi inflasi yang lebih akurat dibandingkan regresi random forest, terutama ketika menggunakan proporsi data P = 0.8.
Kata kunci— regresi linear berganda, regresi random forest, laju inflasi, prediksi, Sumatera This study aims to compare the performance of multiple linear regression and random forest regression methods in predicting inflation rates in several cities on the island of Sumatra. Inflation is an important indicator in macroeconomics, and accurate predictions are needed to help make decisions in economic policy. The data used in this study includes monthly inflation rates from January 2014 to August 2024. The data is taken from the Official Statistical Gazette published by Statistics Indonesia. Both models are tested and evaluated using performance metrics such as RMSE, MAE, MAPE, R². This study compares the performance of both methods using the proportion of training data P = 0.6 and P = 0.8. The analysis results show that for P = 0.6, the multiple linear regression method yields median values of RMSE 0.92, MAE 0.67, MAPE 20.00%, and R² 0.77. Meanwhile, random forest regression at P = 0.6 showed slightly worse performance with a median value of RMSE 0.87, MAE 0.69, MAPE 21.71%, and R² 0.73. At a higher proportion of training data, i.e. P = 0.8, multiple linear regression resulted in a median value of RMSE 0.60, MAE 0.52, MAPE 13.33%, and R² 0.87. On the other hand, random forest regression at P = 0.8 showed a median value of RMSE 0.85, MAE 0.66, MAPE 16.82%, and R² 0.73. In addition, the Wilcoxon test with a data proportion of P = 0.6 showed no statistically significant difference between multiple linear regression and random forest models. However, with a data proportion of P = 0.8, there was a significant difference in RMSE and MAE meaning the two models had significant performance differences for these metrics. Overall, multiple linear regression produces more accurate inflation predictions than random forest regression, especially when using a data proportion of P = 0.8. Keywords— multiple linear regression, random forest regression, inflation rate, prediction, Sumatera |
URI: | https://repository.uksw.edu//handle/123456789/35732 |
Appears in Collections: | T1 - Mathematics |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
T1_662021004_Judul.pdf | 655.01 kB | Adobe PDF | View/Open | |
T1_662021004_Isi.pdf Until 9999-01-01 | 433.93 kB | Adobe PDF | View/Open | |
T1_662021004_Daftar Pustaka.pdf | 250.28 kB | Adobe PDF | View/Open | |
T1_662021004_Lampiran.pdf Until 9999-01-01 | 1.17 MB | Adobe PDF | View/Open | |
T1_662021004_Formulir Pernyataan Persetujuan Penyerahan Lisensi dan Pilihan Embargo.pdf Restricted Access | 1.14 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.