Please use this identifier to cite or link to this item:
https://repository.uksw.edu//handle/123456789/36425
Title: | Pemanfaatan Random Forest untuk Klasifikasi Serangan pada Jaringan Komputer |
Authors: | Benedick, Yosua Lionel |
Keywords: | intrusion detection system;machine learning;decision tree;random forest |
Issue Date: | 12-Feb-2025 |
Abstract: | Penelitian ini menggunakan Random Forest (RF) untuk klasifikasi
serangan pada Intrusion Detection System (IDS). Training dan testing dilakukan
pada dataset UNSW-NB15 dengan jumlah estimator (decision tree) pada RF yang
bervariasi. Klasifikasi yang dilakukan adalah binary classification di mana classifier
tersebut bekerja untuk menentukan apakah sample data yang diproses dari testing
dataset merupakan serangan (attack) atau bukan serangan (normal). Hasil pengujian
menunjukkan RF dengan jumlah estimator 150 memperoleh nilai detection rate
sebesar 99.96% dan akurasi sebesar 81.02%. This study uses Random Forest (RF) for attack classification on the Intrusion Detection System (IDS). Training and testing were conducted on the UNSW-NB15 dataset with varying numbers of estimators (decision trees) on RF. The classification performed was binary classification, where the classifier worked to determine whether the data sample processed from the testing dataset was an attack or not an attack (normal). The test results showed that RF with 150 estimators obtained a detection rate of 99.96% and an accuracy of 81.02%. |
URI: | https://repository.uksw.edu//handle/123456789/36425 |
Appears in Collections: | T1 - Informatics Engineering |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
T1_672023713_Judul.pdf | 680.85 kB | Adobe PDF | View/Open | |
T1_672023713_Isi.pdf Until 9999-01-01 | 474.15 kB | Adobe PDF | View/Open | |
T1_672023713_Daftar Pustaka.pdf | 441.62 kB | Adobe PDF | View/Open | |
T1_672023713_Lisensi dan Embargo.pdf Restricted Access | 362.47 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.