Please use this identifier to cite or link to this item:
https://repository.uksw.edu//handle/123456789/37292
Title: | Klasifikasi Serangan pada Jaringan Komputer berbasis Ensemble Learning menggunakan Gradient Boosting Classifier dan AdaBoost |
Other Titles: | - |
Authors: | Lamalengga, Ari Crismast |
Keywords: | intrusion detection system;machine learning;ensemble learning;gradient boosting |
Issue Date: | 14-May-2025 |
Abstract: | Penelitian ini menggunakan Gradient Boosting dan AdaBoost untuk
klasifikasi serangan pada Intrusion Detection System (IDS). Training dan testing
dilakukan pada dataset UNSW-NB15. Klasifikasi yang dilakukan adalah binary
classification di mana classifier tersebut bekerja untuk menentukan apakah sample
data yang diproses dari testing dataset merupakan serangan (attack) atau bukan
serangan (normal). Hasil pengujian menunjukkan Gradient Boosting dengan jumlah
estimator 150 memperoleh nilai detection rate sebesar 99.40% dan akurasi sebesar
82.47%. AdaBoost dengan jumlah estimator 100 memperoleh nilai detection rate
99.88% dan nilai akurasi 80.82%. This study uses Gradient Boosting and AdaBoost for attack classification on the Intrusion Detection System (IDS). Training and testing were conducted on the UNSW-NB15 dataset. The classification performed was binary classification, where the classifier worked to determine whether the data sample processed from the testing dataset was an attack or not an attack (normal). The test results showed that Gradient Boosting with 150 estimators obtained a detection rate of 99.96% and an accuracy of 81.02%. AdaBoost with 100 estimators obtained a detection rate of 99.88% and an accuracy value of 80.82%. |
URI: | https://repository.uksw.edu//handle/123456789/37292 |
Appears in Collections: | T1 - Informatics Engineering |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
T1_672019180_Judul.pdf | 696.68 kB | Adobe PDF | View/Open | |
T1_672019180_Isi.pdf Until 9999-01-01 | 470.28 kB | Adobe PDF | View/Open | |
T1_672019180_Daftar Pustaka.pdf | 445.35 kB | Adobe PDF | View/Open | |
T1_672019180_Lisensi dan Embargo.pdf Until 9999-01-01 | 362.15 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.