Please use this identifier to cite or link to this item:
https://repository.uksw.edu//handle/123456789/37512
Title: | Clustering Zonasi Daerah Rawan Bencana Alam Provinsi Jawa Tengah Menggunakan Algoritma K-Means dan Library GeoPandas |
Authors: | Faqih, Muhammad Faiq Adhitya |
Keywords: | Banjir;Tanah Longsor;Jawa Tengah;K-Means;Mitigasi Bencana;Flood;Landslide;Central Java;Disaster Mitigation |
Issue Date: | 10-Oct-2024 |
Abstract: | Berdasarkan kajian risiko bencana Jawa Tengah tahun 2016–2020, banjir dan tanah longsor merupakan bencana paling sering terjadi, dengan 818 kasus banjir yang mencakup 31,33% dari total bencana dan tanah longsor sebesar 29,57%. Penelitian ini menggunakan algoritma K-Means dan library GeoPandas untuk mengelompokkan daerah rawan bencana di Jawa Tengah. Data kejadian banjir dan tanah longsor periode 2019–2023 diperoleh dari Badan Nasional Penanggulangan Bencana dan dianalisis melalui beberapa tahapan, yaitu pengumpulan data, standarisasi data menggunakan Standard Scaler, pengelompokan menggunakan metode K-Means, serta visualisasi hasil menggunakan GeoPandas. Hasil analisis menunjukkan bahwa Jawa Tengah terbagi menjadi 4 cluster: cluster 0 untuk daerah rawan bencana (3 wilayah), cluster 1 untuk daerah tidak rawan bencana (22 wilayah), cluster 2 untuk daerah rawan banjir (7 wilayah), dan cluster 3 untuk daerah rawan tanah longsor (3 wilayah). Hasil ini memberikan gambaran yang lebih akurat terkait sebaran daerah rawan bencana dan dapat digunakan sebagai dasar dalam pengambilan keputusan mitigasi bencana yang lebih tepat. Based on the 2016-2020 Central Java Disaster Risk Assessment, floods and landslides are the most frequent disasters, with 818 flood cases accounting for 31.33% of the total disasters and landslides accounting for 29.57%. This study aims to cluster disaster-prone areas in Central Java using the K-Means algorithm and the GeoPandas library. Data on disaster events for the period 2019-2023 was obtained from the National Disaster Management Agency, while administrative map data of Central Java was downloaded from the Geoportal of Central Java Province. The research stages include data collection, data cleaning, standardization using theStandard Scaler method, application of the K-Means algorithm for regional clustering, and visualization of results using GeoPandas. The results showed that Central Java was divided into four clusters, namely: cluster 0 (disaster-prone areas) includes 3 regions, cluster 1 (non-disaster-prone areas) has 22 regions, cluster 2 (flood-prone areas) consists of 7 regions, and cluster 3 (landslide-prone areas) has 3 regions. The results of this research provide spatial data-based information that can be used as a basis in decision-making for disaster mitigation in Central Java. |
URI: | https://repository.uksw.edu//handle/123456789/37512 |
Appears in Collections: | T1 - Informatics Engineering |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
T1_672020017_Judul.pdf | 2.08 MB | Adobe PDF | View/Open | |
T1_672020017_Isi.pdf | 1.24 MB | Adobe PDF | View/Open | |
T1_672020017_Daftar Pustaka.pdf | 587.01 kB | Adobe PDF | View/Open | |
T1_672020017_Formulir Pernyataan Persetujuan Penyerahan lisensi dan pilihan embargo.pdf Until 9999-01-01 | 328.63 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.